Arsenic Speciation

- Methods for analysis of MMA^{III} and DMA^{III}
- Problems of instability
- Uncharacterized arsenic species
- Binding of trivalent arsenic metabolites (e.g., with Hb) and arsenic in blood

X. Chris Le

University of Alberta Edmonton, Alberta, Canada

HPLC-ICPMS

iAs^{III}
 MMA^{III}
 DMA^V
 MMA^V
 DMA^{III}
 iAs^V

nyunue Generation

$$OH - AS - OH$$
OH

$$CH_3 - AS - OH$$

$$OH$$

TMAO
$$\bigcap$$
 CH₃ $-A_S - CH_3$ CH₃

Volatile arsines

$$H^+$$

 $CH_3 - A_SH_2$

Hydride Generation

iAsIII

Volatile arsines

$$_{\text{OH}}^{\text{OH}}$$
 $_{\text{OH}}^{\text{OH}}$

$$AsH_3$$
 BH_4^-

MMAIII

$$CH_3 - A_S - OH$$

$$CH_3 - A_SH_2$$

DMAIII

$$CH_3 - A_S - OH$$
 CH_3

Solveni Extraction

Methods of arsenic speciation analysis

- Direct HPLC separation with ICPMS or HGAFS detection
 - Least alteration to the sample
 - Ability to analyze new arsenic species
- 2. Selective hydride generation and GC-AAS
- Selective solvent extraction followed by HPLC-ICPMS
- Other methods based on chromatography and mass spectrometry

2. Chang spiked u

Change of DMA^{III} to DMA^V in urine

Valenzuela et al. *Environ. Health Perspect.* 113, 250-254 (2005).

- Morning urine samples
- Immediately frozen on dry ice
- Analyzed within 6 h after collection
- Hydride generation GC-AAS method
- The highest %DMA^{III} in urine ever reported
- DMA^{III} 49% DMA^V 23.7% Sum 72.7%
- MMA^{III} 7.4% MMA^V 2.8% Sum 10.2%
- iAs^{III} 8.5% iAs^V 8.6% Sum 17.1%

Reasons for the very high concentrations of DMA^{III} in human urine of this Mexico population

- Minimal oxidation of DMA^{III} to DMA^V?
- Stability of DMA^{III} in these urine samples?
- Anything else special about this study population (e.g., diet)?

3. Arsenic species in blood and biological tissues

- Urinary arsenic is a good marker of exposure
- Arsenic speciation in other biological samples is useful for studying metabolism and toxicity
- Protein interaction with trivalent arsenic metabolites

MMA

DMA"

Inorganic arsenite

Monomethylarsonous acid

Dimethylarsinous acid

Protein

LC-ICPMS analysis of protein-bound As

4. Unidentified Arsenic Species

- We can only study what we can measure
- Metabolic processes are complex and they produce various metabolites
 - Human
 - Animal models
 - Bacteria
- Some metabolites have not been identified and their toxicity is unknown

Arsenic Speciation Analysis

- 1. Methods for arsenic speciation analysis
- 2. Problems of species instability
- Binding of trivalent arsenic metabolites and arsenic in blood
- 4. Uncharacterized arsenic species

X. Chris Le

University of Alberta

Edmonton, Alberta, Canada